Global well-posedness to the two-dimensional incompressible vorticity equation in the half plane

نویسندگان

چکیده

This paper is concerned with the global well-posedness of two-dimensional incompressible vorticity equation in half plane. Under assumption that initial ω0∈Wk,p(R+2) k≥3 an integer and 10. An elementary self-contained proof presented delicate estimates velocity its derivatives are obtained this paper. It should be emphasized uniform estimate on ∫0t‖∇u(τ)‖L∞(R+2)dτ required to complete regularity solution. To do that, double exponential growth time gradient plane established applied. different from Euler equations Sobolev spaces, which Kato-type or logarithmic-type enough close energy estimates.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a synchronic and diachronic approach to the change route of address terms in the two recent centuries of persian language

terms of address as an important linguistics items provide valuable information about the interlocutors, their relationship and their circumstances. this study was done to investigate the change route of persian address terms in the two recent centuries including three historical periods of qajar, pahlavi and after the islamic revolution. data were extracted from a corpus consisting 24 novels w...

15 صفحه اول

Well-Posedness of Two-Dimensional Hydroelastic Waves

A well-posedness theory for the initial value problem for hydroelastic waves in two spatial dimensions is presented. This problem, which arises in numerous applications, describes the evolution of a thin elastic membrane in a two-dimensional potential flow. We use a model for the elastic sheet that accounts for bending stresses and membrane tension, but which neglects the mass of the membrane. ...

متن کامل

Global well-posedness of korteweg-de vries equation in ...

We prove that the Korteweg-de Vries initial-value problem is globally well-posed in H−3/4(R) and the modified Korteweg-de Vries initial-value problem is globally well-posed in H1/4(R). The new ingredient is that we use directly the contraction principle to prove local well-posedness for KdV equation at s = −3/4 by constructing some special resolution spaces in order to avoid some ’logarithmic d...

متن کامل

On the global well-posedness for Euler equations with unbounded vorticity

In this paper, we are interested in the global persistence regularity for the 2D incompressible Euler equations in some function spaces allowing unbounded vorticities. More precisely, we prove the global propagation of the vorticity in some weighted MorreyCampanato spaces and in this framework the velocity field is not necessarily Lipschitz but belongs to the log-Lipschitz class LL, for some α ...

متن کامل

A ug 2 00 8 Low regularity global well - posedness for the two - dimensional Zakharov system ∗

The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L-norm of the Schrödinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffilani, Takaoka and Tao. A polynomial growth bound for the solution is also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2022.126684